Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Infection ; 2022 May 20.
Article in English | MEDLINE | ID: covidwho-2231568

ABSTRACT

PURPOSE: Omicron is rapidly spreading as a new SARS-CoV-2 variant of concern (VOC). The question whether this new variant has an impact on SARS-CoV-2 rapid antigen test (RAT) performance is of utmost importance. To obtain an initial estimate regarding differences of RATs in detecting omicron and delta, seven commonly used SARS-CoV-2 RATs from different manufacturers were analysed using cell culture supernatants and clinical specimens. METHODS: For this purpose, cell culture-expanded omicron and delta preparations were serially diluted in Dulbecco's modified Eagle's Medium (DMEM) and the Limit of Detection (LoD) for both VOCs was determined. Additionally, clinical specimens stored in viral transport media or saline (n = 51) were investigated to complement in vitro results with cell culture supernatants. Ct values and RNA concentrations were determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The in vitro determination of the LoD showed no obvious differences in detection of omicron and delta for the RATs examined. The LoD in this study was at a dilution level of 1:1,000 (corresponding to 3.0-5.6 × 106 RNA copies/mL) for tests I-V and at a dilution level of 1:100 (corresponding to 3.7-4.9 × 107 RNA copies/mL) for tests VI and VII. Based on clinical specimens, no obvious differences were observed between RAT positivity rates when comparing omicron to delta in this study setting. Overall positivity rates varied between manufacturers with 30-81% for omicron and 42-71% for delta. Test VII was only conducted in vitro with cell culture supernatants for feasibility reasons. In the range of Ct < 23, positivity rates were 50-100% for omicron and 67-93% for delta. CONCLUSION: In this study, RATs from various manufacturers were investigated, which displayed no obvious differences in terms of analytical LoD in vitro and RAT positivity rates based on clinical samples comparing the VOCs omicron and delta. However, differences between tests produced by various manufacturers were detected. In terms of clinical samples, a focus of this study was on specimens with high virus concentrations. Further systematic, clinical and laboratory studies utilizing large datasets are urgently needed to confirm reliable performance in terms of sensitivity and specificity for all individual RATs and SARS-CoV-2 variants.

2.
Microorganisms ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2033059

ABSTRACT

Background: Despite a vaccination rate of 82.0% (n = 123/150), a SARS-CoV-2 (Alpha) outbreak with 64.7% (n = 97/150) confirmed infections occurred in a nursing home in Bavaria, Germany. Objective: the aim of this retrospective cohort study was to examine the effects of the Corminaty vaccine in a real-life outbreak situation and to obtain insights into the antibody response to both vaccination and breakthrough infection. Methods: the antibody status of 106 fully vaccinated individuals (54/106 breakthrough infections) and epidemiological data on all 150 residents and facility staff were evaluated. Results: SARS-CoV-2 infections (positive RT-qPCR) were detected in 56.9% (n = 70/123) of fully vaccinated, compared to 100% (n = 27/27) of incompletely or non-vaccinated individuals. The proportion of hospitalized and deceased was 4.1% (n = 5/123) among fully vaccinated and therewith lower compared to 18.5% (n = 5/27) hospitalized and 11.1% (n = 3/27) deceased among incompletely or non-vaccinated. Ct values were significantly lower in incompletely or non-vaccinated (p = 0.02). Neutralizing antibodies were detected in 99.1% (n = 105/106) of serum samples with significantly higher values (p < 0.001) being measured post-breakthrough infection. α-N-antibodies were detected in 37.7% of PCR positive but not in PCR negative individuals. Conclusion: Altogether, our data indicate that SARS-CoV-2 vaccination does provide protection against infection, severe disease progression and death with regards to the Alpha variant. Nonetheless, it also shows that infection and transmission are possible despite full vaccination. It further indicates that breakthrough infections can significantly enhance α-S- and neutralizing antibody responses, indicating a possible benefit from booster vaccinations.

3.
Infection ; 50(3): 761-766, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1712370

ABSTRACT

BACKGROUND: Five SARS-CoV-2 variants are currently considered as variants of concern (VOC). Omicron was declared a VOC at the end of November 2021. Based on different diagnostic methods, the occurrence of Omicron was reported by 52 countries worldwide on December 7 2021. First notified by South Africa with alarming reports on increasing infection rates, this new variant was soon suspected to replace the currently pre-dominating Delta variant leading to further infection waves worldwide. METHODS: Using VOC PCR screening and Next Generation Sequencing (NGS) analysis of selected samples, we investigated the circulation of Omicron in the German federal state Bavaria. For this, we analyzed SARS-CoV-2 surveillance data from our laboratory generated from calendar week (CW) 01 to 49/2021. RESULTS: So far, we have detected 69 Omicron cases in our laboratory from CW 47-49/2021 using RT-qPCR followed by melting curve analysis. The first 16 cases were analyzed by NGS and all were confirmed as Omicron. CONCLUSION: Our data strongly support no circulation of the new Omicron variant before CW 47/2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics
4.
Epidemiol Infect ; 149: e226, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1537267

ABSTRACT

The corona virus disease-2019 (COVID-19) pandemic began in Wuhan, China, and quickly spread around the world. The pandemic overlapped with two consecutive influenza seasons (2019/2020 and 2020/2021). This provided the opportunity to study community circulation of influenza viruses and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in outpatients with acute respiratory infections during these two seasons within the Bavarian Influenza Sentinel (BIS) in Bavaria, Germany. From September to March, oropharyngeal swabs collected at BIS were analysed for influenza viruses and SARS-CoV-2 by real-time polymerase chain reaction. In BIS 2019/2020, 1376 swabs were tested for influenza viruses. The average positive rate was 37.6%, with a maximum of over 60% (in January). The predominant influenza viruses were Influenza A(H1N1)pdm09 (n = 202), Influenza A(H3N2) (n = 144) and Influenza B Victoria lineage (n = 129). In all, 610 of these BIS swabs contained sufficient material to retrospectively test for SARS-CoV-2. SARS-CoV-2 RNA was not detectable in any of these swabs. In BIS 2020/2021, 470 swabs were tested for influenza viruses and 457 for SARS-CoV-2. Only three swabs (0.6%) were positive for Influenza, while SARS-CoV-2 was found in 30 swabs (6.6%). We showed that no circulation of SARS-CoV-2 was detectable in BIS during the 2019/2020 influenza season, while virtually no influenza viruses were found in BIS 2020/2021 during the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Influenza, Human/epidemiology , Sentinel Surveillance , COVID-19/diagnosis , Germany/epidemiology , Humans , Incidence , Influenza, Human/diagnosis , Oropharynx/virology , Orthomyxoviridae/classification , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Seasons
5.
Diagnostics (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1444128

ABSTRACT

Children have been disproportionately affected during the COVID-19 pandemic. We aimed to assess a saliva-based algorithm for SARS-CoV-2 testing to be used in schools and childcare institutions under pandemic conditions. A weekly SARS-CoV-2 sentinel study in primary schools, kindergartens, and childcare facilities was conducted over a 12-week-period. In a sub-study covering 7 weeks, 1895 paired oropharyngeal and saliva samples were processed for SARS-CoV-2 rRT-PCR testing in both asymptomatic children (n = 1243) and staff (n = 652). Forty-nine additional concurrent swab and saliva samples were collected from SARS-CoV-2 infected patients (patient cohort). The Salivette® system was used for saliva collection and assessed for feasibility and diagnostic performance. For children, a mean of 1.18 mL saliva could be obtained. Based on results from both cohorts, the Salivette® testing algorithm demonstrated the specificity of 100% (95% CI 99.7-100) and sensitivity of 94.9% (95% CI 81.4-99.1) with oropharyngeal swabs as reference. Agreement between sampling systems was 100% for moderate to high viral load situations (defined as Ct-values <33 from oropharyngeal swabs). Comparative analysis of Ct-values derived from saliva vs. oropharyngeal swabs demonstrated a significant difference (mean 4.23; 95% CI 2.48-6.00). In conclusion, the Salivette® system proved to be an easy-to-use, safe and feasible saliva collection method and a more pleasant alternative to oropharyngeal swabs for SARS-CoV-2 testing in children aged 3 years and above.

6.
Microorganisms ; 9(9)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1410330

ABSTRACT

Rapid antigen tests (RATs) are an integral part of SARS-CoV-2 containment strategies. As emerging variants of concern (VOCs) displace the initially circulating strains, it is crucial that RATs do not fail to detect these new variants. In this study, four RATs for nasal swab testing were investigated using cultured strains of B.1.1 (non-VOC), B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). Based on dilution series in cell culture medium and pooled saliva, the limit of detection of these RATs was determined in a laboratory setting. Further investigations on cross-reactivity were conducted using recombinant N-protein from seasonal human coronaviruses (hCoVs). RATs evaluated showed an overall comparable performance with cultured strains of the non-VOC B.1.1 and the VOCs Alpha, Beta, Gamma, and Delta. No cross-reactivity was detected with recombinant N-protein of the hCoV strains HKU1, OC43, NL63, and 229E. A continuous evaluation of SARS-CoV-2 RAT performance is required, especially with regard to evolving mutations. Moreover, cross-reactivity and interference with pathogens and other substances on the test performance of RATs should be consistently investigated to ensure suitability in the context of SARS-CoV-2 containment.

7.
Epidemiol Infect ; 149: e150, 2021 06 23.
Article in English | MEDLINE | ID: covidwho-1338505

ABSTRACT

We assessed severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) reverse transcriptase-polymerase chain reaction (RT-PCR) diagnostic sensitivity and cycle threshold (Ct) values relative to symptom onset in symptomatic coronavirus disease-2019 (COVID-19) patients from Bavaria, Germany, of whom a subset was repeatedly tested. Locally weighted scatterplot smoothing method was used to assess the relationship between symptom onset and Ct-values. Kaplan-Meier plots were used to visualise the empirical probability of detecting viral ribonucleic acid (RNA) over time and estimate the time until clearance of viral RNA among the repeatedly tested patients. Among 721 reported COVID-19 cases, the viral RNA was detected in specimens taken between three days before and up to 48 days after symptom onset. The mean Ct-value was 28.6 (95% confidence interval (CI) 28.2-29.0) with the lowest mean Ct-value (26.2) observed two days after symptom onset. Up to 7 days after symptom onset, the diagnostic sensitivity of the RT-PCR among repeatedly sampled patients (n = 208) remained above 90% and decreased to 50% at day 12 (95% CI 10.5-21.5). Our data provide valuable estimates to optimise the timing of sampling of individuals for SARS-CoV-2 detection. A considerable proportion of specimens sampled before symptom onset had Ct-values comparable with Ct-values after symptom onset, suggesting the probability of presymptomatic transmission.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Virus Shedding , Adolescent , Adult , Aged , Asymptomatic Infections , COVID-19/diagnosis , Child , Child, Preschool , Female , Germany , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Sputum/virology , Time Factors , Young Adult
9.
Emerg Infect Dis ; 27(8): 2192-2196, 2021 08.
Article in English | MEDLINE | ID: covidwho-1259327

ABSTRACT

We investigated severe acute respiratory syndrome coronavirus 2 infections in primary schools, kindergartens, and nurseries in Germany. Of 3,169 oropharyngeal swab specimens, only 2 were positive by real-time reverse transcription PCR. Asymptomatic children attending these institutions do not appear to be driving the pandemic when appropriate infection control measures are used.


Subject(s)
COVID-19 , Nurseries, Infant , Child , Germany/epidemiology , Humans , Infant , SARS-CoV-2 , Schools , Sentinel Surveillance
10.
Euro Surveill ; 26(16)2021 04.
Article in English | MEDLINE | ID: covidwho-1200054

ABSTRACT

SARS-CoV-2 variants of concern (VOC) should not escape molecular surveillance. We investigated if SARS-CoV-2 rapid antigen tests (RATs) could detect B.1.1.7 and B.1.351 VOCs in certain laboratory conditions. Infectious cell culture supernatants containing B.1.1.7, B.1.351 or non-VOC SARS-CoV-2 were respectively diluted both in DMEM and saliva. Dilutions were analysed with Roche, Siemens, Abbott, nal von minden and RapiGEN RATs. While further studies with appropriate real-life clinical samples are warranted, all RATs detected B.1.1.7 and B.1.351, generally comparable to non-VOC strain.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Serological Testing , Germany , Humans
11.
Infection ; 49(5): 1029-1032, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1198524

ABSTRACT

The Bavarian Influenza Sentinel (BIS) monitors the annual influenza season by combining virological and epidemiological data. The 2019/2020 influenza season overlapped with the beginning COVID-19 pandemic thus allowing to investigate whether there was an unnoticed spread of SARS-CoV-2 among outpatients with acute respiratory infections in the community prior to the first COVID-19 cluster in Bavaria. Therefore, we retrospectively analysed oropharyngeal swabs obtained in BIS between calendar week (CW) 39 in 2019 and CW 14 in 2020 for the presence of SARS-CoV-2 RNA by RT-PCR. 610 of all 1376 BIS swabs-contained sufficient material to test for SARS-CoV-2, among them 260 oropharyngeal swabs which were collected prior to the first notified German COVID-19 case in CW 04/2020. In none of these swabs SARS-CoV-2 RNA was detected suggesting no SARS-CoV-2 spread prior to late January 2020 in Bavaria.


Subject(s)
COVID-19 , Germany/epidemiology , Humans , Pandemics , RNA, Viral , Retrospective Studies , SARS-CoV-2
12.
Eur J Clin Microbiol Infect Dis ; 40(6): 1303-1308, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1053012

ABSTRACT

To face the COVID-19 pandemic, the need for fast and reliable diagnostic assays for the detection of SARS-CoV-2 is immense. We describe our laboratory experiences evaluating nine commercially available real-time RT-PCR assays. We found that assays differed considerably in performance and validation before routine use is mandatory.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , Humans , Molecular Diagnostic Techniques/standards , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2
13.
Virol J ; 17(1): 160, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-883583

ABSTRACT

BACKGROUND: Fast, reliable and easy to handle methods are required to facilitate urgently needed point-of-care testing (POCT) in the current coronavirus pandemic. Life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, infecting more than 33,500,000 people and killing over 1 million of them as of October 2020. Infected individuals without any symptoms might still transfer the virus to others underlining the extraordinary transmissibility of this new coronavirus. In order to identify early infections effectively, treat patients on time and control disease spreading, rapid, accurate and onsite testing methods are urgently required. RESULTS: Here we report the development of a loop-mediated isothermal amplification (LAMP) based method to detect SARS-CoV-2 genes ORF8 and N directly from pharyngeal swab samples. The established reverse transcription LAMP (RT-LAMP) assay detects SARS-CoV-2 directly from pharyngeal swab samples without previous time-consuming and laborious RNA extraction. The assay is sensitive and highly specific for SARS-CoV-2 detection, showing no cross reactivity when tested on 20 other respiratory pathogens. The assay is 12 times faster and 10 times cheaper than routine reverse transcription real-time polymerase chain reaction, depending on the assay used. CONCLUSION: The fast and easy to handle RT-LAMP assay amplifying specifically the genomic regions ORF8 and N of SARS-CoV-2 is ideally suited for POCT at e.g. railway stations, airports or hospitals. Given the current pandemic situation, rapid, cost efficient and onsite methods like the here presented RT-LAMP assay are urgently needed to contain the viral spread.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Chlorocebus aethiops , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Genes, Viral , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/diagnosis , Point-of-Care Systems , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2 , Vero Cells
14.
Euro Surveill ; 25(9)2020 03.
Article in English | MEDLINE | ID: covidwho-4532

ABSTRACT

The need for timely establishment of diagnostic assays arose when Germany was confronted with the first travel-associated outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Europe. We describe our laboratory experiences during a large contact tracing investigation, comparing previously published real-time RT-PCR assays in different PCR systems and a commercial kit. We found that assay performance using the same primers and probes with different PCR systems varied and the commercial kit performed well.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections , Pneumonia, Viral , Real-Time Polymerase Chain Reaction/methods , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Germany , Humans , Oligonucleotide Array Sequence Analysis , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Time Factors , Viral Envelope Proteins/analysis , Viral Envelope Proteins/genetics , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL